If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15s^2+4s-4=0
a = 15; b = 4; c = -4;
Δ = b2-4ac
Δ = 42-4·15·(-4)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-16}{2*15}=\frac{-20}{30} =-2/3 $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+16}{2*15}=\frac{12}{30} =2/5 $
| 2006-1.7x=5.4 | | 4(e+11=48 | | 10a+3=-4 | | 35-2/x=14 | | X/3=3x+1 | | 8p=2p+6p | | 4f-2=5+3f | | -9n+4=-7 | | 3t=3t-7 | | 3q=2q+5q | | -8u=-8u-5 | | -6d=-10-6d | | -5n+3=0 | | 12(k-5)=36 | | 12x-7+3x+14+57=180 | | 5(g-3)=45 | | 6-7x=-10x+10 | | 6n-23=6n+7 | | 25+0.50r=1.25-10 | | -2.4+2.1x=-2.86 | | -6(x+5)+8=-7(x-5) | | 4/3v-25=33 | | -8=-8g-6 | | -2j=-20 | | 12=-f | | 4x-20=3x+16-20=4 | | 7x+6x+5=-8 | | 4x-20=3x+16-20= | | 2x-4x+3=9 | | (9x-5)=1/(-2x+8) | | 2-(-5)=2x-4x+3 | | y+21=13 |